Experimental Investigations on Augmentation of Turbulent Flow Heat Transfer in A Horizontal Tube Using Square Leaf Inserts
نویسندگان
چکیده
The present work deals with the results of the experimental investigations carried out on augmentation of turbulent flow heat transfer in a horizontal tube by the means of tube inserts, with air as working fluid. Experiments were carried out initially for the plain tube. Nusselt number and friction factor obtained experimentally were validated against those obtained from theoretical correlations. Secondly experimental investigations using five kinds (90, 60FW, 60 BW, 30 FW, 30 BW) of louvered square leaf inserts were carried out to estimate the enhancement of heat transfer rate for air in the presence of insert. Nusselt number and pressure drop increased, overall enhancement ratio is calculated to determine the optimum geometry of tube insert. Keywords—Heat transfer, enhancement, turbulent, pressure drop, louvered square leaf inserts.
منابع مشابه
Experimental Investigations in a Circular Tube to Enhance Turbulent Heat Transfer Using Mesh Inserts
The present work shows the results obtained from experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of mesh inserts with air as the working fluid. Sixteen types of mesh inserts with screen diameters of 22mm, 18mm, 14mm and 10mm for varying distance between the screens of 50mm, 100mm, 150mm and 200mm in the porosity range of 99.73 to 99....
متن کاملTurbulent Mixed Convection of a Nanofluid in a Horizontal Circular Tube with Non-Uniform Wall Heat Flux Using a Two-Phase Approach
In this paper, Turbulent mixed convective heat transfer of water and Al2O3 nanofluid has been numerically studied in a horizontal tube under non-uniform heat flux on the upper wall and insulation in the lower wall using mixture model. For the discretization of governing equations, the second-order upstream difference scheme and finite volume method were used. The coupling of pressure and veloci...
متن کاملNumerical Comparison of Turbulent Heat Transfer and Flow Characteristics of SiO2/Water Nanofluid within Helically Corrugated Tubes and Plain Tube
Turbulent heat transfer in Helically Corrugated Tubes (HCT) was numerically investigated for pure water and SiO2 nanofluid using Computational Fluid Dynamics (CFD). This study was carried out for different corrugating pitches (5, 7, 8 mm) and heights (0.5, 0.75, 1.25 mm) at various Reynolds numbers ranging from 5000 to 13300. The effect of nanoparticles on heat transfer augmentation for plain t...
متن کاملComparison of convective heat transfer of turbulent nanofluid flow through helical and conical coiled tubes
Application of nanofluid and coiled tubes are two passive methods for increasing the heat transfer. In the present study, the turbulent flows of water and nanofluid in coiled tubes heat exchanger were numerically studied. CuO-water nanofluid containing 1 vol% copper oxide nanoparticles was used and single-phase approach was considered for nanofluid flow. The effect of different geometrical para...
متن کاملInvestigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers
In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...
متن کامل